

COORDINACIÓN DE CARRERA	PÁGINA 1 de 5
PLAN E INSTRUMENTO DE EVALUACIÓN DIAGNÓSTICA	VERSIÓN: 1
CÓDIGO: ISTLRG-CCA-SE-FT-005	VIGENCIA DESDE: 13/09/2021

Carrera:	Tecnología Superior en Electricidad	Periodo académico:	Mayo 2022 – Octubre 2022		
Docente:	Ing. Fernando Arévalo S.	Ciclo:	Cuarto A		
Asignatura:	Máquinas AC				
Tipo de evaluación:	Diagnóstica				
Objetivo: Evaluar los conocimientos de los estudiantes de la materia de Máquinas AC en los temas neces desarrollo de la materia.		uinas AC en los temas necesarios para el			

1. Seleccione de la siguiente lista todas aquellas máquinas que no representan una máquina eléctrica rotativ	
- Pregunta 1 y 2: Identifica las máquinas eléctricas por su funcionamiento Pregunta 3: Define el fundamento físico que se emplea para dar origen a las máquinas eléctricas Pregunta 4, 5, 6 y 7: Aplica generalidades de las máquinas y la energía eléctrica. - Pregunta 4, 5, 6 y 7: Aplica generalidades de las máquinas y la energía eléctrica. - Pregunta 4, 5, 6 y 7: Aplica generalidades de las máquinas y la energía eléctrica. - Pregunta 4, 5, 6 y 7: Aplica generalidades de las máquinas y la energía eléctrica en mecánic - Pregunta 4, 5, 6 y 7: Aplica generalidades de las máquinas que sirve para transformar la energía eléctrica en mecánic (1) - Respuesta: a) Generador (1) - Respuesta: a) Generador (1) - Respuesta: a) Generador b) Motor c) Transformador	

COORDINACIÓN DE CARRERA	PÁGINA 2 de 5
PLAN E INSTRUMENTO DE EVALUACIÓN DIAGNÓSTICA	VERSIÓN: 1
CÓDIGO : ISTLRG-CCA-SE-FT-005	VIGENCIA DESDE: 13/09/2021

3. El principio físico que se aprovecha para dar funcionamiento a motores y generadores está dado por las leyes de Faraday, mismo que dice: (2)

Respuesta:

- a) La suma de las corrientes entrantes a un nodo es igual a la suma de las corrientes salientes de dicho nodo.
- b) El voltaje es directamente proporcional a la corriente e inversamente proporcional a la tensión.
- c) Para que haya circulación de electrones se necesita de un circuito cerrado constituido por un elemento conductor.
- d) Si se somete un material conductor a un campo electromagnético variable, en el conductor se induce una tensión eléctrica.
- 4. Diferencias entre la energía eléctrica continua (DC) y alterna (AC). (2)
- a) AC es variante en el tiempo, mientras que DC es constante en el tiempo.
- b) Tanto AC como DC son variantes en el tiempo.
- c) Tanto AC como DC son constantes en el tiempo.
- d) DC es variante en el tiempo, mientras que AC es constante en el tiempo.
- 5. De la siguiente lista seleccione la opción que se toma como principal característica para clasificar las máquinas eléctricas AC. (2)

Respuesta:

- a) Número de fases.
- b) Nivel de voltaje.
- c) Frecuencia de operación.
- d) Velocidad de operación.

COORDINACIÓN DE CARRERA	PÁGINA 3 de 5
PLAN E INSTRUMENTO DE EVALUACIÓN DIAGNÓSTICA	VERSIÓN: 1
CÓDIGO : ISTLRG-CCA-SE-FT-005	VIGENCIA DESDE: 13/09/2021

	6. Se puede convertir la energía eléctrica en otras formas de energía. (1)
	Respuesta:
	a) Si.
	b) No.
	7. La energía eléctrica se obtiene a partir de otra forma de energía y la utilización de un sistema que aproveche dicha
	energía primaria para convertirla en energía eléctrica. (1)
	Respuesta:
	a) Si.
	b) No.
- OBSERVACIONES:	

Anexo: Instrumento de evaluación

COORDINACIÓN DE CARRERA	PÁGINA 4 de 5
PLAN E INSTRUMENTO DE EVALUACIÓN	VERSIÓN: 1
CÓDIGO: ISTLRG-CCA-SE-FT-005	VIGENCIA DESDE: 13/09/2021

Carrera:	Tecnología Superior en Electricidad	Ciclo:	Cuarto	
Asignatura:	Máquinas AC	Tipo de evaluación:	Diagnostica	
Docente:	Ing. Fernando Arévalo S.	Duración (min):	40 minutos	
Fecha de aplicación:		Calificación:	/10	
Nombre del estudiante:				

INSTRUCCIONES

- Lea detenidamente las preguntas
- Seleccione la opción que crea correcta

PREGUNTAS

- 1. Seleccione de la siguiente lista todas aquellas máquinas que no representan una máquina eléctrica rotativa. (1)
 - a) Generador
 - b) Motor
 - c) Transformador
- 2. Seleccione la opción que representa un sistema que sirve para transformar la energía eléctrica en mecánica. (1)
 - a) Generador
 - b) Motor
 - c) Transformador
- 3. El principio físico que se aprovecha para dar funcionamiento a motores y generadores está dado por las leyes de Faraday, mismo que dice: (2)
 - a) La suma de las corrientes entrantes a un nodo es igual a la suma de las corrientes salientes de dicho nodo
 - b) El voltaje es directamente proporcional a la corriente e inversamente proporcional a la tensión
 - c) Para que haya circulación de electrones se necesita de un circuito cerrado constituido por un elemento conductor
 - d) Si se somete un material conductor a un campo electromagnético variable, en el conductor se induce una tensión eléctrica

COORDINACIÓN DE CARRERA	PÁGINA 5 de 5
PLAN E INSTRUMENTO DE EVALUACIÓN	VERSIÓN: 1
CÓDIGO: ISTLRG-CCA-SE-FT-005	VIGENCIA DESDE: 13/09/2021

4. Di	ferencias	entre la	energía	eléctrica	continua	(DC)	y alterna	(AC)). C	2)
-------	-----------	----------	---------	-----------	----------	------	-----------	------	------	----

- a) AC es variante en el tiempo, mientras que DC es constante en el tiempo.
- b) Tanto AC como DC son variantes en el tiempo.
- c) Tanto AC como DC son constantes en el tiempo.
- d) DC es variante en el tiempo, mientras que AC es constante en el tiempo.
- 5. De la siguiente lista seleccione la opción que se toma como principal característica para clasificar las máquinas eléctricas AC. (2)
 - a) Número de fases.
 - b) Nivel de voltaje.
 - c) Frecuencia de operación.
 - d) Velocidad de operación.
- 6. Se puede convertir la energía eléctrica en otras formas de energía. (1)
 - a) Si.
 - b) No.
- 7. La energía eléctrica se obtiene a partir de otra forma de energía y la utilización de un sistema que aproveche dicha energía primaria para convertirla en energía eléctrica. (1)
 - a) Si.
 - b) No.

Firma del estudiante: ______

Elaborado por:
Ing. Fernando Arévalo S.
DOCENTE
DOCENTE
Fecha: 30/05/2022